Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Crit Care ; 26(1): 26, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1701731

ABSTRACT

BACKGROUND: Intravenous vitamin C administration in septic shock may have a sparing effect on vasopressor requirements, and vitamin C's enzyme cofactor functions provide a mechanistic rationale. Our study aimed to determine the effect of intravenous vitamin C administration on vasopressor requirements and other outcomes in patients with septic shock. METHODS: This was a double-blind, randomised placebo-controlled trial in 40 patients with septic shock who were randomised (1:1) to receive intravenous vitamin C (at a dose of 25 mg/kg of body weight every 6 h) or placebo (intravenous 5% dextrose) for up to 96 h, or until death or discharge. The primary outcome was intravenous vasopressor requirements (dose and duration), and secondary outcomes included Sequential Organ Failure Assessment (SOFA) scores, intensive care unit (ICU) and hospital length of stay, and mortality. In addition, blood samples were collected to determine vitamin C kinetics and inflammatory marker concentrations. RESULTS: Median plasma vitamin C concentrations were deficient at baseline (9.2 [4.4, 12] µmol/L) and increased to 408 (227, 560) µmol/L following 72 h of intervention. The mean duration of intravenous vasopressor infusion in the vitamin C group was 48 (95% CI 35-62) hours and in the placebo group was 54 (95% CI 41-62) hours (p = 0.52). The dose of vasopressor delivered over time was comparable between the two groups, as were SOFA scores (p > 0.05). The median ICU length of stay in the intervention group was 3.8 (2.2, 9.8) days versus 7.1 (3.1, 20) days in the placebo group (p = 0.12). The median hospital length of stay for the vitamin C group was 18 (11, 35) days versus 22 (10, 52) days for the placebo group (p = 0.65). Mortality was comparable between the two groups (p > 0.05). Of the inflammatory markers, neutrophil counts were elevated in the vitamin C group relative to placebo by 72 h (p = 0.01). C-reactive protein and myeloperoxidase concentrations were elevated at baseline, however, the two groups were comparable over time (p > 0.05). CONCLUSIONS: Our pilot study indicated that intravenous vitamin C did not provide significant decreases in the mean dose or duration of vasopressor infusion. Further research that takes into account the potential impact of intervention timing, dose and duration, and location of trial, may provide more definitive evidence. TRIAL REGISTRATION: ACTRN12617001184369 (11/8/2017).


Subject(s)
Shock, Septic , Ascorbic Acid/therapeutic use , Double-Blind Method , Humans , Organ Dysfunction Scores , Pilot Projects , Shock, Septic/drug therapy , Vitamins
2.
Free Radic Biol Med ; 179: 208-212, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1520966

ABSTRACT

BACKGROUND: Septic shock is a life-threatening dysregulated response to severe infection and is associated with elevated oxidative stress. We aimed to assess protein carbonyls in critically ill patients with different sources of sepsis and determine the effect of vitamin C intervention on protein carbonyl concentrations. METHODS: Critically ill patients with septic shock (n = 40) were recruited, and sources of sepsis and ICU severity scores were recorded. The patients were randomised to receive either intravenous vitamin C (100 mg/kg body weight/day) or placebo infusions. Blood samples were collected at baseline and daily for up to three days for measurement of cell counts, vitamin C concentrations, protein carbonyls, C-reactive protein, and myeloperoxidase concentrations. RESULTS: Protein carbonyl concentrations increased 2.2-fold in the cohort over the duration of the study (from 169 to 369 pmol/mg protein; p = 0.03). There were significant correlations between protein carbonyl concentrations and ICU severity scores (APACHE III r = 0.47 and SOFA r = 0.37; p < 0.05) at baseline. At study admission, the patients with pneumonia had nearly 3-fold higher protein carbonyl concentrations relative to the patients with other sources of sepsis (435 vs 157 pmol/mg protein, p < 0.0001). The septic patients had deficient vitamin C status at baseline (9.8 ± 1.4 µmol/L). This increased to 456 ± 90 µmol/L following three days of intravenous vitamin C intervention. Vitamin C intervention did not attenuate the increase in protein carbonyl concentrations. CONCLUSIONS: Circulating protein carbonyls are specifically elevated in critically ill patients with pneumonia relative to other sources of sepsis. The reasons for this are currently unclear and may indicate a mechanism unique to pulmonary sources of sepsis. Intravenous vitamin C administration did not attenuate the increase in protein carbonyls over time.


Subject(s)
Pneumonia , Sepsis , APACHE , Critical Illness , Humans , Protein Carbonylation , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL